.7! Jadi, banyaknya cara memilih 5 pemain dari 12 pemain ada 792 cara. Contoh: Ada berapa cara 2 bola merah, 3 bola biru, dan 4 bola putih dapat dipilih dari suatu kotak yang berisi 4 bola merah, 6 bola biru, dan 5 bola putih ? Jawab: 2 bola merah dapat dipilih dari 4 bola dalam 4C2 cara. 17Sebuah kotak berisi 4 bola merah dan 5 bola putih. Dari dalam kotak diambil 3 bola sekaligus secara acak. Peluang terambil 1bola merah dan 2 bola putih adalah . a. 203 c. 31 e. 2110 b. 92 d. 209 18.Dua buah dadu dilempar undi bersama-sama sebanyak satu kali. Peluang munculnya mata 3pada dadu pertama atau 2 pada dadu kedua adalah . Ada3 kotak yaitu 1, 2, dan 3 yang masing-masing berisi bola merah dan putih, seperti yang dituliskan dalam tabel di bawah ini Mula-mula satu kotak dipilih secara acak, kemudian dari kotak yang terpilih diambil 1 bola juga secara acak. Tiap kotak mempunyai kesempatan yang sama untuk terpilih. Berapa peluang bahwa bola itu merah ? Darisebuah kotak yang berisi 6 bola putih dan 4 bola hijau diambil 2 bola sekaligus secara acak. Peluang terambil 1 bola putih dan 1 bola hijau adalah . Peluang adalah harapan terjadinya suatu kejadian dengan dikuantitatifkan. Permutasi adalah unsur" yang berbeda dengan memperhatikan urutan. Vay Tiền Online Chuyển Khoản Ngay. lenii23 lenii23 Matematika Sekolah Menengah Atas terjawab • terverifikasi oleh ahli Kotak 1 berisi 4 bola hitam dan 6 bola putih. kotak 2 berisi 5 bola merah dan 4 bola putih dari kotak 1 diambil 3 bola dan dari kotak 2 diambil 4 bola. tentukan peluang terambilnya 3 bola putih dari kotak 1 dan 4 bola merah dari kotak 2. sama uraiannya Iklan Iklan acim acim PP1 x PM2= 6C3/10C3 x 4C4/9C4= 6!/3!3!/10!/7!3! x 1/9!/5!4!= 20/120 x 1/126= 1/6 x 1/126= 1/756 Iklan Iklan Pertanyaan baru di Matematika 1. Dua buah lingkaran masing-masing berjari-jari 10 cm dan 3 cm. Jika Panjang garis singgung persekutuan luar kedua lingkaran 24 cm, maka jarak kedua … pusat lingkaran adalah... A. 15 cm C. 20 cm B. 17 cm D. 25 cm​ cara sudun kebawah 436×24-875+653=​ agil mempunyai tiga buah jam weker, jam pertama berdering tiap 25 menit, jam kedua berdering tiap 5 menit, dan jam ketiga berdering tiap 10 menit. dal … am tiap berapa menitkah ketiga jam berdering bersama?fpb kpk cara​ cara sudun kebawah 436×24-875+653=​ cara sudun kebawah 436×24-875+653=​ Sebelumnya Berikutnya Kelas 12 SMAPeluang WajibPeluang Kejadian Saling BebasSebuah kotak berisi 6 bola merah dan 4 bola putih. Dari kotak itu diambil 2 bola secara acak. Tiap kali kedua bola itu diambil, dikembalikan ke dalam kotak. Jika pengambilan itu dilakukan sebanyak 90 kali, maka frekuensi harapan yang terambil satu bola merah satu bola putih adalah ....Peluang Kejadian Saling BebasPeluang Teoritis dan Frekuensi HarapanPeluang WajibPELUANGPROBABILITASSTATISTIKAMatematikaRekomendasi video solusi lainnya0212Dalam percobaan melambungkan 3 mata uang logam, peluang m...0210Pada pelemparan dua koin bersama, peluang muncul masing-m...0223Terdapat 2 kotak yang masing-masing berisi bola hitam dan...0332Dalam supermarket terdapat 12 ibu-ibu dan 4 remaja yang s...Teks videokalau komplain di sini kita diberikan 6 bola merah dan bola itu adalah sama dengan bola kita perlu mencari frekuensi harapan terambil 1 bola merah dan 1 bola putih Artinya kita kita cari dulu banyak cara untuk mengambil dari 10 C2 kita gunakan kombinasi bukan permutasi karena pada pengambilan ini tidak memperhatikan urutan jika kita mengambil bola Merah 2 bola putih sama saja kita mengambil dulu baru bola merah dari sama dengan 10 faktorial dibagi dengan n dikurang k berarti 10 dikurang 2 adalah 8 faktorial * 9 faktorial 2 faktorial adalah 10 dikalikan 9 dikalikan 8 faktorial dibagi dengan 8 faktorial dikali X 2 faktorial per 8 faktorial = 10 dikalikan dengan 9 dibagi dengan 2 faktorial 2 dikalikan 1 B Core saja 1 menjadi 45 orang kita. Cari banyak cara mengambil 1 bola merah dan 6 Bola merah yang tersedia kita mencari cara mengambil 1 bola yang terdiri dari 6 tetap menggunakan kombinasi bukan permutasi karena tidak memperhatikan urutan apa pun maka = 6 faktorial dibagi dengan 6 dikurang 1 adalah 5 faktorial dikali 1 faktorial faktorial = 6 dikalikan 55 faktorial dikalikan dengan 1 faktorial adalah 1. Maka hasilnya adalah 6. Sekarang kita cari banyak cara mengambil 1 bola putih. Dari 4 dikurang 1 adalah dikalikan dengan 1 = 4 * 3 faktorial dibagi dengan 3 faktorial dikalikan dengan 1 faktorial adalah 1 = 4 karung kita cari banyak cara mengambil 1 bola merah dan 1 bola putih. Jika bunga merah jika kita misalkan bola merah adalah M1 sampai 6 sedangkan bola putih adalah p 1 sampai 4 maka ketika kita mengambil M1 kita dapat mengambil 1/2 atau maka ada 4 pilihan untuk m1 m2 ada 4 pilihan 2 dan seterusnya sampai 6 memiliki 4 pilihan untuk bola putih nya karena untuk setiap bola Merah terdapat empat cara pengambilan bola kita perlu mengalikan banyaknya cara mengambil bola merah banyaknya cara mengambil bola putih bola merah banyak cara mengambil 1 bola merah dan kalikan dengan 4 = 24 orang tidak dapat mencari peluang pengambilan 1 bola merah dan 1 bola putih. Banyaknya cara pengambilan 1 bola merah dari India 45 jadinya adalah peluangnya sekarang kita pernah mencari frekuensi harapan yang banyak Harapannya adalah 45 dikalikan dengan banyaknya pengulangan yang 90 x 2 adalah 8. Jadi frekuensi harapan a adalah 48 kali Sampai jumpa di Solo berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Blog Koma - Pada artikel ini kita akan membahas Peluang Kejadian Bersyarat yang merupakan bagian dari peluang kejadian majemuk. Silahkan juga baca materi lain yang berkaitan dengan kejadian majemuk yaitu "peluang kejadian saling lepas dan saling bebas" dan baca juga konsep "peluang kejadian secara umum" untuk memudahkan dalam mempelajari materi Peluang Kejadian Bersyarat ini. Konsep Peluang Kejadian Bersyarat Dua kejadian disebut kejadian bersyarat atau kejadian yang saling bergantung apabila terjadi atau tidak terjadinya kejadian A akan memengaruhi terjadi atau tidak terjadinya kejadian B. Peluang terjadinya kejadian A dengan syarat kejadian B telah terjadi terlebih dahulu ditulis $ PAB $ $ \begin{align} PAB = \frac{PA \cap B}{PB} , \end{align} \, $ dengan $ \, PB \neq 0 $ Peluang terjadinya kejadian B dengan syarat kejadian A telah terjadi terlebih dahulu ditulis $ PBA $ $ \begin{align} PBA = \frac{PA \cap B}{PA} , \end{align} \, $ dengan $ \, PA \neq 0 $ dengan $ PA \cap B = \, $ peluang irisan A dan B. Contoh Soal Peluang Kejadian Bersyarat 1. Sebuah dadu dilempar sekali. Tentukan peluang munculnya mata dadu ganjil dengan syarat munculnya kejadian mata dadu prima lebih dahulu. Penyelesaian *. Misal A adalah kejadian munculnya angka prima, Ruang sampel S = {1,2,3,4,5,6}, sehingga $ nS = 6 $ A = {2,3,5}, sehingga $ nA = 3 $. Peluang kejadian A $ \begin{align} PA = \frac{nA}{nS} = \frac{3}{6} = \frac{1}{2} \end{align} $ *. Misal B adalah kejadian muncul mata dadu ganjil, B = {1,3,5} , sehingga irisannya $ A \cap B \, $ = {3,5} , dengan $ nA \cap B = 2 $. Peluang irisannya $ \begin{align} PA \cap B = \frac{nA \cap B}{nS} = \frac{2}{6} = \frac{1}{3} \end{align} $ *. Menentukan peluang munculnya mata dadu ganjil dengan syarat munculnya kejadian mata dadu prima lebih dahulu $ PBA $ $ \begin{align} PBA = \frac{PA \cap B}{PA} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3} \end{align} $ Jadi, peluang munculnya mata dadu ganjil dengan syarat munculnya kejadian mata dadu prima lebih dahulu adalah $ \frac{2}{3} $ . Catatan *. Kejadian A terjadi lebih dahulu, sehingga A = {2,3,5} adalah sebagai ruang sampel dari kejadian B. *. Kejadian B B = {3,5} , sehingga peluang kejadian B adalah $ \frac{2}{3} $. 2. Sebuah kotak berisi bola merah dan bola putih, dan setiap bola diberi tanda X atau tanda Y. Berikut komposisi bola-bola yang ada dalam kotak Dipilih satu bola secara acak dari kotak tersebut. Tentukan peluang dari kejadian terambil bola hitam bertanda X. Penyelesaian *. Kejadian ini bisa kita pandang sebagai peluang kejadian munculnya bola hitam kejadian B dengan syarat bola bertanda X kejadian X lebih dahulu. *. Terdapat 8 bola bertanda X dari total 11 bola, sehingga peluangnya $ \, PX = \frac{8}{11} $. *. Dari 8 bola bertanda X terdapat 5 warna hitam, artinya $ nB \cap X = 5 $. sehingga peluangnya $ \, PB \cap X = \frac{5}{11} $. *. Peluang warna hitam B dengan syarat bertanda X $ PBX $ $ \begin{align} PBX = \frac{PB \cap X}{PX} = \frac{\frac{5}{11}}{\frac{8}{11}} = \frac{5}{8} \end{align} $ Jadi, peluang dari kejadian terambil bola hitam bertanda X adalah $ \frac{5}{8} $. Menentukan peluang irisan dari peluang kejadian bersyarat Peluang kejadian A dan B dengan kejadian B terjadi lebih dahulu $PA \cap B $ , $ \begin{align} PAB = \frac{PA \cap B}{PB} \rightarrow PA \cap B = PB \times PAB \end{align} $ Peluang kejadian A dan B dengan kejadian A terjadi lebih dahulu $PA \cap B $ , $ \begin{align} PBA = \frac{PA \cap B}{PA} \rightarrow PA \cap B = PA \times PBA \end{align} $ Contoh soal 3. Dalam sebuah kotak terdapat 6 bola merah dan 4 bola putih. Jika sebuah bola diambil dalam kotak itu berturut-turut sebanyak dua kali tanpa pengembalian. Tentukan peluang yang terambil a. kedua-duanya bola merah, b. bola pertama warna merah dan bola kedua warna putih. Penyelesaian a. kedua-duanya bola merah, *. Misal A kejadian bola pertama merah, Peluang A $ PA = \frac{nA}{nS} = \frac{6}{10} = \frac{3}{5} $. *. B kejadian bola kedua warna merah. karena bola tidak dikembalikan, maka bola merah tinggal 5 bola merah dan 4 bola putih. Sehingga peluang B dengan kejadian A sudah terjadi $ PBA $ $ PBA = \frac{5}{9} $ *. Peluang bola pertama merah dan kedua merah $ PA \cap B $ $ \begin{align} PA \cap B = PA \times PBA = \frac{3}{5} \times \frac{5}{9} = \frac{1}{3} \end{align} $ Jadi, peluang keduanya merah adalah $ \frac{1}{3} $ b. bola pertama warna merah dan bola kedua warna putih *. Misal A kejadian bola pertama merah, Peluang A $ PA = \frac{nA}{nS} = \frac{6}{10} = \frac{3}{5} $. *. B kejadian bola kedua warna putih. karena bola tidak dikembalikan, maka bola merah tinggal 5 bola merah dan 4 bola putih. Sehingga peluang B dengan kejadian A sudah terjadi $ PBA $ $ PBA = \frac{4}{9} $ *. Peluang bola pertama merah dan kedua putih $ PA \cap B $ $ \begin{align} PA \cap B = PA \times PBA = \frac{3}{5} \times \frac{4}{9} = \frac{4}{15} \end{align} $ Jadi, peluang bola pertama warna merah dan bola kedua warna putih adalah $ \frac{4}{15} $ 4. Dalam supermarket terdapat 12 ibu-ibu dan 4 orang remaja yang sedang berbelanja. Kemudian dari mereka dipilih secara acak 3 orang untuk mendapatkan 3 undian berhadiah, dan setiap orang hanya berhak memperoleh 1 hadiah. Tentukan peluang dari kejadian a. ketiga undian dimenangkan oleh ibu-ibu. b. undian pertama dimenangkan remaja, undian kedua dimenangkan oleh ibu-ibu, dan undian ketiga dimenangkan remaja. c. terdapat 2 undian yang dimenangkan remaja dan 1 undian dimenangkan oleh ibu-ibu. Penyelesaian *. Misalkan I adalah kejadian ibu-ibu memenangkan undian dan R adalah kejadian remaja memenangkan undian. a. ketiga undian dimenangkan oleh ibu-ibu. ada 12 ibu-ibuu dan 4 remaja, sehingga $ nS = 16 $. *. Peluang ibu-ibu memenangkan undian pertama $ PI_1 = \frac{12}{16} = \frac{3}{4} $. *. 1 ibu sudah menang, maka tersisa 11 ibu-ibu dan 4 remaja, sehingga Peluang ibu-ibu memenangkan undian kedua $ PI_2I_1 = \frac{11}{15} $. *. 2 ibu sudah menang, maka tersisa 10 ibu-ibu dan 4 remaja, sehingga Peluang ibu-ibu memenangkan undian ketiga $ PI_3I_1,I_2 = \frac{10}{14} = \frac{5}{7} $. *. Peluang ketiganya dimenangkan oleh ibu-ibu $ PI_1 \cap I_2 \cap I_3 $ $ \begin{align} PI_1 \cap I_2 \cap I_3 & = PI_1 \times PI_2I_1 \times PI_3I_1,I_2 \\ & = \frac{3}{4} \times \frac{11}{15} \times \frac{5}{7} \\ & = \frac{11}{28} \end{align} $ Jadi, peluang ketiga undian dimenangkan oleh ibu-ibu adalah $ \frac{11}{28} $. b. undian pertama dimenangkan remaja, undian kedua dimenangkan oleh ibu-ibu, dan undian ketiga dimenangkan remaja. ada 12 ibu-ibuu dan 4 remaja, sehingga $ nS = 16 $. *. Peluang remaja memenangkan undian pertama $ PR_1 = \frac{4}{16} = \frac{1}{4} $. *. 1 remaja sudah menang, maka tersisa 12 ibu-ibu dan 3 remaja, sehingga Peluang ibu-ibu memenangkan undian kedua $ PIR_1 = \frac{12}{15} = \frac{4}{5} $. *. 1 ibu sudah menang dan 1 remaja, maka tersisa 11 ibu-ibu dan 3 remaja, sehingga Peluang remaja memenangkan undian ketiga $ PR_2R_1,I = \frac{3}{14} $. *. undian pertama dimenangkan remaja, undian kedua dimenangkan oleh ibu-ibu, dan undian ketiga dimenangkan remaja $ PR_1 \cap I \cap R_2 $ $ \begin{align} PR_1 \cap I \cap R_2 & = PR_1 \times PIR_1 \times PR_2R_1,I \\ & = \frac{1}{4} \times \frac{4}{5} \times \frac{3}{14} \\ & = \frac{3}{70} \end{align} $ Jadi, peluangnya adalah $ \frac{3}{70} $. c. terdapat 2 undian yang dimenangkan remaja dan 1 undian dimenangkan oleh ibu-ibu. Terdapat tiga kemungkinan dan cara menghitungnya mirip dengan cara bagian b sebelumnya. *. undian pertama dimenangkan remaja, undian kedua dimenangkan oleh ibu-ibu, dan undian ketiga dimenangkan remaja, $ \begin{align} PR_1 \cap I \cap R_2 & = PR_1 \times PIR_1 \times PR_2R_1,I \\ & = \frac{3}{70} = 0,0428 \end{align} $ *. undian pertama dimenangkan remaja, undian kedua dimenangkan oleh remaja, dan undian ketiga dimenangkan ibu-ibu, $ \begin{align} PR_1 \cap R_2 \cap I & = PR_1 \times PR_2R_1 \times PIR_1,R_2 \\ & = \frac{4}{16} \times \frac{3}{15} \times \frac{12}{14} \\ & = 0,0428 \end{align} $ *. undian pertama dimenangkan ibu-ibu, undian kedua dimenangkan oleh remaja, dan undian ketiga dimenangkan remaja, $ \begin{align} PI \cap R_1 \cap R_2 & = PI \times PR_1I \times PR_2I,R_1 \\ & = \frac{12}{16} \times \frac{4}{15} \times \frac{3}{14} \\ & = 0,0428 \end{align} $ Jadi, peluang terdapat 2 undian yang dimenangkan remaja dan 1 undian dimenangkan oleh ibu-ibu adalah $ \, 0,0428 + 0,0428 + 0,0428 = 0,1284 $ .

sebuah kotak berisi 4 bola merah dan 6 bola putih